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Abstract. It is studied here how the Ablowitz-Ladik (aL) hierarchy and their restricted flows
are related to the AXNS hierarchy and to their restricted flows in the continuous limit. It is shown
that restricted flows of the AL hierarchy yield discrete maps approximating restricted flows of
the akns hierarchy. Integrals of motion and Lax representation for restricted flows of the aL
hierarchy as well as a discrete zero-curvature representation for the AL hierarchy with sources
are given.

1. Introduction

In this paper we consider restricted flows of the Ablowitz—Ladik (AL) hierarchy in order to
construct discrete rmaps approximating restricted flows of the AKNS hierarchy [1 2] which
are known to possess the form of multiwave interaction equations.

This work is a part of a programme aimed towards systematic construction of mtegrable
maps approximating integrable Hamiltonian systems constructed as restricted flows of
soliton hierarchy [3-6]. These maps give rise to discrete algorithms for the numerical
caleulation of trajectories [7]. Such algorithms are known [7, 8] to be considerably better
than the standard discretizations (e.g. a multistep method) or even symplectic discretizations.

By restricted flows of a soliton hierarchy we means sets of ordinary differential equations
{ODE) invariant with respect to the action of all flows of this hierarchy which are constructed
in the following way: they consist of a fixed number of copies of the spectral problem and
of a restriction for a (higher) flow of the hierarchy in terms of square eigenfunctions,
It has been shown [1,2,9, }10] that, in many instances, these equations have the form of
Newton equations or of a dynamical system and, therefore, can model physically interesting
processes. Restricted flows of the AKNS hierarchy [1,2] are physically interesting equations
because they acquire the form of multiwave interaction systems [11] which model the growth
of a low-frequency internal ocean wave by interaction with a spectrum of higher frequency
waves [12] and have also been used as a model for plasma turbulence [13].

The approach for constructing restricted flows of soliton hierarchy can also be applied
to obtain restricted flows (discrete maps) of a hierarchy of integrable discrete systems
(nonlinear differential difference equations). We suppose that the hierarchy of integrable
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discrete systems is associated with a discrete isospectral problem and possesses Hamiltonian
structure. Then we consider a system consisting of N copies of the spectral problem and of
constraint relating the variational derivatives of Hamiltonian functions and eigenvalues. This
system is also invariant under all flows in the hierarchy and naturally gives rise to a discrete
Euler-Lagrange equations. Integrals of motion and Lax representation for these Lagrange
systems can be deduced directly from the stationary discrete zero-curvature equation for
the hierarchy. In many cases, these discrete maps are discrete versions of restricted flows
of some soliton hierarchy. As we shall show, the restricted flows of the AL hierarchy are
discrete versions of restricted flows of the AKNS hierarchy.

We note that discrete versions of several classical integrable systems are investigated in
[14]. To describe such a discrete system, a variational principle is taken as a starting point,
and the Lax representation for the discrete integrable system is found via a factorization of
certain matrix polynomials in [14]. It is easy to find that this approach and the approach
mentioned above are quite different and are used to treat different systems. We would like
to emphasize that the starting point for reducing discrete maps in our approach is a hierarchy
of integrable discrete systems with Lax representation and Hamil{onian structure, and the
property of these maps, such as the Lax representation, is directly deduced from one of the
hierarchies.

This paper is organised as follows. In the next section, we describe the zero-curvature
representation for the AL hierarchy [15], by using the method of {16], and present recursion
formulae and the Hamiltonjan structure for the AL hierarchy in a somewhat different way
than in [13,17,18]. Then, in section 3, we show, by using the method in [6], how the
Hamiltonian structure, the recursion relation and the square eigenfunction relation for the AL
hierarchy converge to those for the AKNS hierarchy. In particular, we construct a sequence of
equations in the AL hierarchy which has the AKNS hierarchy as a continuous limit, Finally,
in section 4, we study restricted flows of the AL hierarchy and find integrals of motion
and Lax representations for these Lagrange systems as well as the discrete zero-curvature
representation for the AL hierarchy with sources. We also prove that restricted flows of the
AL hierarchy go to restricted flows of the AKNS hierarchy.

2. The Hamiltonian structure of the AL hierarchy

Consider the following Ablowitz—Ladik discrete isospectral problem [15]:

EYy=Uy  U=U z)=(§ 1‘/22) v=Gn ) @D

where u = (u, u2)’ = (Q, RY, 0 = QO(n,t) and R = R(n, 1) depend on integers n € Z
and ¢ € R, z is the spectral parameter and the shift operator £ and difference operator D
are defined as

(EfY(n) = fln+1) (Df)n) = (E—-Dfm) nel. (2.2)

Throughout this paper, we write f%® = E® £ Some recursion formulae for a hierarchy of
discrete integrable systems associated with (2.1) {referred to as an AL hierarchy) were given
in [15,17,18]. To find the continuous limit and restricted flows of the AL hierarchy, we
need their Hamiltonian structure and zero-curvature representation. So, first we present the
discrete zero-curvature and Hamiltonian structures as well as the corresponding recursion
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formulae for the AL hierarchy. These formulae are somewhat different from those in
(15,17,18].

We combine (2.1) with its f-evolution part
¥y, = Vot m=1,2... . -{2.3)

The compatibility condition of (2.1) and {2.3) gives rise to a discrete zero-curvature equation
(assuming z, = 0)

U, = (EV,)U-UV, m=12... (24)

To derive the hierarchy of evolution equations associated with (2.1), we first solve the
stationary discrete zero-curvature equation [16] '

(ETYU — UF = 0. | (2.5)

The substitution of

A B
r=(2 %) 26)

into (2.5} gives

AW, 1 BOR _ Az — CO =0 _ @.7a)
AU)Q+B(1)_ZI__BZ+AQ=O 2.75)
cWy _ a0p_ar_clog @2.7¢)
4
g 1
cg — A{l)z — BR+ AE =0, (2.7d)

We shall find two power-series solutions to (2.7) in powers of z and -i;, respectively.

2.1. The AL hierarchy corresponding to I' expanded in power series of 1 /z

Let us assume
- _ 2
I= (é _BA) =3 (C;;;;_ii_l Prac ) : @8)
Then, (2.7) leads to the following recursion relations:
AN _4g=0 B, = Al + Ag) M = RAP + 4¢)  (29a)
A% — Ay = 0Cyu_ — RBY | = OC{), — RBuwy (2.9)
By = Q(AS + Az) + B (2.9¢)

C?(.:!i-l = R(A%J + Az + Coy i=1,2.... . (294d)
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As the initial value for this recursion, we take

Ap=1. (2.10a)
Then we obtain
Bi=0 CP=R  Ay=-QR"Y (2.10b)
B3 = (!) QQ(DR Q2 ( i) C:EU — R(—U _ RR("UQ — RZQ(I) L (2 IOC)
Let us denote
”m ) m-~] .
ZAZI'ZZMH2: Z 32‘_4_!22171—2!—1
T2 =, = (2.11)
Z Cap 7221 _ZAZI_sz—zi
i=0
It is easy to verify that
0 Boms
EC#™))U - Uz, = 2.12
e e 1Y) @12)
which is not compatible with U,,. Therefote, we set
Vo = 21 + An (2.13)

and try to find A, such that (EV,,)U — UV, is of the following form compatible with U, :

(EV)U = UV, = (En gg‘) : 2.14)

It is easy to find that

0O 0
Ay = (0 AZm) (2.15)

and

&n = Bany1 — A Q Fo=—C +ADR. (2.16)
Then, (2.4) gives rise to the following hierarchy of equations:
Q. = Bons1 ~ A2 Q@ Ry, =—C3) +ADR  m=12... (2.17)

In order to write hierarchy (2.17) in Hamiltonian form, we apply the following trace
identity given in [16]:

) ol 9 av
Eu_,T (VEZ_) (z”(gz) )Tr( Bu,) (2.18)
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where Tr means trace of a matrix, ¥ is a constant to be fixed and V is given by

1 Al -BR -AQ+ Bz
V=r0"'= z 2.
1—RQ (C%—{—AR —CQ—Az) @19
and &/8u; stands for the discrete variational derivative defined in the usval way as
8 3
.._Ji = E{—k)_f (2.20)

B 2u®

keZ

By using {2.7), it is found that

v L 1 _ L
TI(VBZ) TR0 (ZA BRLCO— )-—-Z(A + A) (2.21a)

LAY 1 ot _ 4
TI(VBQ)—IHRQ(C +AR) 1_—RQ(C z—AVR)  (2215)

v 1
Then, (2.18} gives
234 d 1 ) '
o =) M, __ 4 ;
250 (z (Bz)z)l—RQ(C z— AY'R) (2.22a)
28A - a 1
Eﬁ = (z ¥ (B_Z) zy) T=RO (Bz — AQ). (2.225)

By expanding in powers of z, we obtain

5A2¢ Y
5Q — RO

To fix the constant y, we simply set { = [ and find that y = 0. Thus, we have

(CSL — AS'R). : (2.226)

dH;

(1) 1 _
Fi= 17 G~ 4R =55 : (2.230)
1 S H;
el (Byi— Ay 2.23b
Gy - RQ(BE:-H %Q) = R ( )
where
H =t i=12.... (2.23¢)

i
For i = 0, we define

R JH{] i Q _ 8H0

=25 = 35 =125 =% Ho=—-In(l— RQ).  (2.23d)
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The recursion formula for F; and G; can be found in the following way. From (2.9)
we have that

1
OF; ~RG; = 1—_—RQ(QC§2“ — ASRQ— RByy1 + 4 RQ) = A — As;

and, therefore,
Ay = D"Y(QF, — RG;) (2.24)

where D! is the inverse of the difference operator D. By using (2.95), (2.9¢) and (2.24),
it is found that

Fi= AR+ Cy
l—RQ( 2R+ Caiz1)
! -1 (1)
“1-RQ {RDT(QCy-1 — RBy_ 1) + Coici ]
= 1— RQ{RD—I[Q(CZE-—[ - R(—I)Aﬁ_z) - R(Bg)—: _ Q(])Ag'z.z)]

— RORMAy o+ Cyy}
_ 1
T 1—-RQ
+(1—RORVDNQF,_ —RG;)) +EXV(1 — RQ)Fi}.

We can also find a similar formula for G;. We, therefore, have

[RDTQE"I(1 ~RQ)Fi_; — RE(1 — RQ)Go1]

FEN_s(FaYN_i{ Fo\N_;if RIMA-RD ;o
(G,-) ‘L(G;_l) =L (Gu)‘L (Q/(I—RQ)) LB @B
where
L= (2: 22) (2.25b)
1
_ ey -1 =Dt (=1} y—1
I”_I_RQE (1 RQ)+1_RQD QETV(1-RA+RT'DTQ
Ly = = HRRQD“IRE(I —RO)—RCVUDTIR
b = 122501 - RO + QD™ EQ
— 1 _ _L =1 p(l) ;{7 _ _ =1
In = 5501~ RQ) — 1= =D RVEP( - RQ) - VD ER.

Therefore, we can write the hierarchy (2.17) in the following Hamiltonian form

Q) (Fm) m(Fﬂ) m(R/(l“RQ)
(R o Gom Go Q/(1-RQ)
A,
=J— m=1,2,... (2.26)
du
where the Hamiltonian operator J is given by

_ 0 1—-RQ _ _Awm _
J-(_1+RQ 0 ) Hy =2 m=12.... (2.27)
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2.2. The AL hierarchy corresponding to T expanded in power series of 2

Similarly, if we take I" in (2.6) as follows
-~ A B d Auz% By IZz:+1
F=(% - = _ s T 2.28
(C —A) ; (Czi-mzz’*l —Agz¥ @.28)

then (2.7) leads to the following recursion relations:

AV — A =0  BO=—0AP+4d)  Ci=-RAP+A) (2.29a)
ﬁé‘,’ — Ay = QC3)y — RByoy = QCoa1 — Rﬁ’gil (2.298)

é;[zH = Q(Am + Ag) + B (2.29¢)
Coir = —R(AY + A+ C, i=12,.... (2.29d)

As the initial value for this recursion we take
Ao=1. (2.30a)
Then, we obtain
BW=—-9 Ci=-R A =-RO" (2.300)
Bl =04 00" "R+ @?RY  G=-RU+RRVUQ+R’QEY (2300
Furthermore, in the same way as for (2.11)~(2.15), we obtain
V= T2+ A,
m —1
Z fizz Z-—Zm-s-zi mz §2i+1 Z-2m+2i+[
= = +( A 0) @.31)
Z Coiny i o Z g_ﬁ g~ 2m+
i=0 i=0

Now we substitate V,, in (2.3) with V,,, then (2.4), with V,,, = V,,,, gives rise to the following
hierarchy of equations:

0, =-B0, - A% 0 R, = Come1 + AmR. (2.32)

Then, we find that

_ 5H;

Fi=—1 (Cz;+l +45R) = - 50 (2.332)

= 1 = (1 i 1 ;

G, = _m_Q{Béill Aoy = i=1,2,..., (2.33p)
where

o Alz

H=-"2 i=1,2,.... (2.33¢)
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For i = 0, we define

Fy = i—RRQ = Z—Ig Gy = 1 _QRQ = %%9 Hy=—In(1 —RQ). (2.33d)
We also have
(g‘)=E(g;ll)=,r}(gz)=L‘(S§((ll:§g))) i=12,... (2.34a)
where
i= (2: 2;) ’ (2.348)
In= T=Ro E(l=RQ) 1 RQD" OWED(1-R)-RVDT'EQ
Tip = 1 _RRQ D'RY(1 - RQY+RYDER
In =—7= RQD"’QE(I —-ROY-0"YD"!0
In= — RQE(‘”(l—RQ)-}-—I_LRQD‘]RE("UU—RQ)+Q(‘”D‘1R.

Therefore, we can write hierarchy (2.32) in the following Hamiltonian form:

gy _ FuN_im (BN _ ;s RIC—RQ _ % _
(R):,._J(Gm)_” (Go)“” (Q/(l—RQ))_Jau m=L2...

(2.35a)
where the Hamiltonian operator J is given by (2.27) and
- A
2 m=12,.... (2.35b)
m
Finally, by combining (2.26) and (2.35), we obtain the following proposition.
Proposition 1. If we take
Vi = (01 Vin + V)Y (2.36)

where «; and e are arbitrary constants', V,, and V,, are given by (2.13) and (2.31),
respectively, and the discrete hierarchy of zero-curvature equations (2.4) then gives rise
to the following AL hierarchy:

(8), =27 (&) +=r (&)

= JL" (g‘;) + o J I (g’;)

_ JS(Olem + szf'}m>

=12,... .
S m (2.37)
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where the Hamiltonian operator J is given by (2.27), recursion operator L and L by (2.25h)
and (2.34b), (Fy, Go)* and (Fp, Gg)* by (2.23d) and (2.33d) and H,, and H,, by (2.27) and

(2.35b).
The adjoint eguation for (2.1) reads:

ECVg = U ¢ = (¢1, ¢2) (2.38)
and it can be found by a direct calculation that the square eigenfunctions

8z 8z

E—Q- = 1&2915; and S_R = 1/f1¢2 (2.39)
satisfy
8z _ Yadr \ _ 282 _ o f Yty
LE =L (¢1¢2) BRI (1#1@52) (2.40a)
=8z = (g _i_‘g_{_l(iffsz’])
L=t (%052) T 28 £ \V¥ig/)’ (2.406)

3. The continuvous limit of the AL hierarchy

It is known that some nonfinear differential-difference equations in the AL hierarchy are
discrete versions of some soliton equations, such as discrete mkdv [15]. We shall show here
that the Hamiltonian structure, the recursion relation and the square eigenfunction relation
for the AL hierarchy converge to those for the AKNS hierarchy, and the continuous limit of
a sequence of equations in the AL hierarchy (2.37) yields the AKNS hierarchy.

The AKNS spectral problem is [19]

Vi = MY 'M=M(a,x)=(_r" j{) v=0nt) (D

where & = (g, r)" and A is the spectral parameter. The AKNS hierarchy associated with (3.1)
reads: :

(7), =o(5rz) momsan (5) o5 mmvaee 02
La "

where p is a constant and

Crel } _ Ce\ __ gk f 7
(bkil)_Lo(bk)_Lo(q) (330)

e ‘ (3.36)

a, = 37 (gex — rby) g, =

0 -2 _1/a—-2r87lg 2rd~1r
J°=(2 o) Lo = ( _2go-lg  —8+2g8-1r ) B39
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Here, 8 = 8/8x and 88! = 8713 = 1. In particular, we have
ap = —1 bg=¢co=a, =0 o=r
bi=q a=3qr =i (34)
i

by =—1g, e3=3(rex — 2 by = 3(gex —24%r), ...

If we take r = F¢* and p = 2i, then (3.2), for m = 1, gives the nonlinear Schrédinger
{NLS) equation

G = Gux izqz‘?*- (3.5)
The adjoint equation for (3.1) reads:
b= —O0M  §= (b1 o). (3.6)

It is known that the varational derivatives of eigenvalues have the following expression in
terms of eigenfunctions: ’

dr

L P B T

5 (a_:u) = (vnqsz) G.7
r

and that

S (g _ 8k, (T
Logg = Lo (wnqﬁz) =t =t (w,hc,i:z) ) (3.8)

Let us consider the AL hierarchy on a lattice with a small step /&. It is known [15] that
if we take

E®OMm, ) =hq(x +kh, 1) E®QR@m, ) = hr(x +kh, 1) (3.92)
E®yy(n, 1) = Bui(x +kh, 1) E®gi(n, ) = Bi(x + kh, t) i=1,2 (3.9
z=g"" (3.9¢)

where £ is a constant, then we have

Eyy — 21 — Qv = BR(Y1 + M — q¥2) + O(FY) (3.10a)
Bt = Ry1 — 2 = Bt — 3a = rif) + O (3.106)
EDG, — 21 — Ry = —Bhi§1: — A1 + ra) + O(h?) (3.10¢)
ENg, — O¢y — %m = —Bh(da + Az + ad) + OGP (3.10d)

which implies that (2.1) and (2.38) go to (3.1) and (3.6), respectively, in the continuous
limit,
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Notice that
EW® = " =1 1 [hd + O™ (3.11a)
D =3 + 3h%8% + O(A®) D =n71971 - L+ 0. (3.115)

Owing to (3.9), it is found that the Hamiltonian operator J given by (2.27) has the following
expansion:

J = =17y~ 1grigh® + 0*). (3.12)

Similarly, for the recursion operator (2.25b) and (2.345), we find, from (3.9) and (3.11),
that

L=1-2hLy+h*L;+ 0% (3.13a)
L=1+2hLo+R*L+ 00 (3.13b)
where
L= %az—ra-lga ~rg—rd" g —rd ra+ri 37l
e —gd7 g3 +q*+qs07lg  18*—qdTlrd—rg—qd7'r
3 0 83 0 ~rd~lg ro7lr
=Lo (o —a) + (0 —a) (—qa-lg g8~
= Lo(2Lo — o} + 3(2Lo — Lo} o
=213 -1 ' (3.14a)
10 —2rd~lg 2ra7lr '
= = . NEY
! (o 1) b (—243—1.;; 2qa-1r) (3.148)
It is easy to see that, owing to (3.9),
Yoy = Bndh Iy = B (3.15)
and

L—71=1—2hLlg—(1-200)I+0%Y

= —2h(Lo — AD) + O(A?) (3.16)

and, therefore, we obtain
o[t _ a2 _ Py 2 17
(L—27 (%%) 28°R{Lo — A1) (%@) + OCh™) (3.17)

which implies that (2.40g) goes to (3.8} in the continuous limit. It is known [15 19] that
for the properly defined square eigenfunctions

AP CAFIN o AR 7 3.18
(ﬂfﬂ?ﬁz) ;(GE)Z ;(G,.)Z (3.18a)
~2$1 _ = C; -
(1}1&32) ‘g(b‘-)* (3.185)
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and, owing to (3.17), recursion relation (2.252) corresponds to recursion relation (3.3).
From (3.13a), we obiain

Fg —........]_....... R _ r 3
(&)= (2) (7)o

(L—1I) (g‘;) = (CI;:) - (g‘;) = (=2hLo+A*L)k (;) + 0(a%

and in general

(L—-nr (g‘;) =Y CLi-nm (g.‘)
i=0 ¢
= (=2hLo + R>L))"h (;) + O™y

= (=) R 2L - A{LET L)) ( ;) + QA"
(3.19)

where the bracket {, } means
L Ly =Ly i+ L2 L1 Lo+ - -+ Lol L 72 + L L
It is easy to show, according to definition (3.145), that

()= a())-

for any f and g, and, therefore,

L 2 (r) =0
(L™ I3} g
and by using (3.14), we obtain
{Lr=1, Ly} ( ; ) = [2{L7T, L3} - L1127, 1] ( ;) = 2m Ly ( ;) :

Then, we obtain, from (3.12) and (3.19),

m
I Ch(=1ym (F ) = — L Jo(—2" W 2LE + 2mh LT (’") + O™+,

! Gi q

(3.20)

Similarly, we find

I — l 149'2?51 _ 2 _ -{}2%1 2
(L z'*’-) (wz) =28%h(Lo =20 (m) + O(h?) (3.21)
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which means that (2.405) goes to (3.8) in the continuous limit. Also, (3.21) and (3.18)
imply that recursion formula (2.34a) corresponds to recursion formula (3.3). In the same
way, we get, from (3.13&), that

mn
4 —i Ft - mn r \
JZ: CL(—-1)" (Gz) = — 52" 2L - 2ma LT (q} +O@E".  (3.22)
By combining (3.20) and (3.22), we obtain

JZC.!( l)m-—l[( ) ( l)m ](g ):I_( 2)mmhm+2J LJ'H'H( )+O(hm+3)

(3.23)
and we can, therefore, formulate the following proposition.

Proposition 2. A sequence of equations in the AL hierarchy (2.37) relates to the AKNS
hierarchy in the continuous limit in the following way:

Q P . i m—i F; m=1 Fi
(%), e e[ (8) v (3)]

= h[ (f) — plo Lyt (;) } + 0@, (3.24)

Equation (3.24) implies that the following sequence of equations in the AL hierarchy:

2 i i F ) 1 — F‘
(R),n, W“’ZC( D [(G;)+(_1) I(G,-)] (3.25)

goes to the AKNS hierarchy (3.2) in the continuous limit. For example, for m = 1, (3.24)
becomes

2\ _ 2, ( RW+R"V-RRNg - RRVQ -2R
R . 4nt oL oW 4 oD _ gt-UR — QOWR —20

1
= hl: (f) - Z,O.fo (;‘w 2?‘ )] + O(n*). (3.26)
1 LX

If we take R = Q% and p = 2i, the left-hand side of (3.26) gives

0, = ~5107 + 0 = 00%(@ " + 0) ~ 2] (327)

which is the so-called differential-difference NSE. Equation (3.26) implies that (3.27) goes
to the NSE (3.5) in the continuous limit.
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4. Restricted flows of the AL hierarchy

We consider for N distinct z;, j = 1,..., N, the following system of equations consisting
of replicas of (2.1) and (2.38), as well as of the restriction of variational derivatives for
conserved quantities Hy, and z;:

1 )
Eyn; = gy + Qe Evr; = Ryn; + ;%j i=1....N (4.12)
-F
1
ECDg = z;01; + Repo; ECVGy; = 0¢1; + ‘z—_¢2j i=L...,N 4.15)
J
§Hy, <L 8z :
5 =0 , (4.1¢)

j=]

As argued in 9, 10, 1-5], this system is invariant with respect to the action of all flows of
the AL hierarchy and admits a natural Lagrangian formulation. We cali (4.1) the restricted
flows of the AL hierarchy. We shall show that integrals of motion and Lax representation
for (4.1) can be directly derived from the stationary discrete zero-curvature equation (2.5).
One of the main reasons for studying (4.1) is that they provide discrete versions of the
restricted flows of the AKNS hierarchy which are finite-dimensional completely-integrable
Hamiltonian systems.
We shall denote the inner product in RY by {-,-) and use the following notation:

U= (Wi, .0 i) ®; = (du,.... o) i=1,2 A = diagzy, ..., zy).

By substituting (2.39) into (4.1), we obtain

EW, = A¥ + Q¥ EW = RU; + A7, (4.20)
ECP®, = A®; + RO, ECDG, = 0 + A7 D, 4.2b)
= (U, & —t o, @ 42
50 {¥2, P1) 7 (M, @3} (4.2¢)
which are discrete Euler-Lagrange equations [20]
5L 5L 5L sL
— —=0 ‘=I’2 ——"—"0 .........:0 4.3
3%, 3, ! 3R 30 (4-34)

with the Lagrangian
L= (0", &)+ (95", &3) — Q(¥s, 1) — R(¥, ©2)
— (AT, D) — (AT, @) 4 H,. (4.3b)
For example, equations {4.2), for ky = 1, read
EV) = AWy + QU EW, = RY; + A~ (4.4a)
ECD®, = AP + RO, ECD®y = 0d; + A0, (4.4b)
RV = (4, @y} o = (¥, ©a). (4.4c)
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It is easy to see from (4.2a) and (4.25) that

(W, @)+ (AT ) = (AT, o) + (87w, 957
= (AT, @) + QAN By) + RIATY, &g) + (AT, @)

which means that the following k; are integrals of motion for the Lagrangian system (4.2):
=t o Al 08Dy =01, (4.5)

However, there are only N independent integrals of motion among #;. In order to find
more independent integrals of motion for (4.2), we need the following formula obtained

from (2.3) and T = VI:

DI =[U,V] (4.6a)
or

rd=yv. (4.6b)
Thus, '

DT =TeMY -T2 = T V)? — TR(VU)? =0
which leads to

D(TrT?) = 2D(A%> + BC) =
or

TrI% = 2(A% + BC) = const. @.7)

This implies that if I" satisfies (2.5), then

k=1
B = Z{;Ag,Aﬂc -2i Zo Boy 11 Cop i k=01,... (4.8)
= =

are mtegrals of motion for the Lagrangian system (4.2). To find F; with the simplest
expression in terms of coordinates (¥, ¥, @, 1, by, R), we have to construct I° from
(4.2) so that T' satisfies (2.5) and A, B,C have the simplest expressions in terms of
(¥, ¥, Q, @1, P2, R).

Proposition 3. Let us define

Ay = Az Byt = Byiyy Coip = Coupr i=0,....%-1 “9a)
— @, o) “90)

Ay = %((Az“'""“’% &y — (ARl 90V iz kgt (4.9¢)

Bypyy = (AMtH gy gDy izko (4.94)

Coigr = (MMM, oDy i3 (4.9¢)
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then Az, Bairr, Caitl, under (4.2), satisfy (2.9), namely,
SR B _ v Ayz¥ §2:+lz_2i_i
r= ( —A) - ; (CZ:‘-HZ_:'”_] —Auz™¥

under (4.2), satisfies (2.5), so we have the following integrals of motion for the Lagrangian
system (4.2)

Ly T N

k=1
Fy = Xoj Ay gy + ; Baiw1 Cor—aict k=0,1,.... (4.10)
1= F

Proof. From (4.2¢), we obtain

Fk[) ((‘1’2,‘1)!})
)= : 4.11a
(Gko {¥y, Pa) ( )
According to (2.25) and (2.40q), let us define
{3" it f P N _ i { (W2 P} Y (AZ(f—ko]\yz, o) .
(Gi ) =L (Gk" =L (\I"lg q)z) - (AZ(Z—-ko] q;], q)Z) 2 2 ko.
{4.118)

By using (2.23), (2.24} and (4.2), we find that

Ay =DV (QF — RGY)
= DA gD _ Ay, @) — (AR, @70 — Ay
= (A2l pimy i 2 ko (4.12a)

Byiy1 = (1 — RO)G; + 04y
= (I — RO}AX0Wy, &) + Q(AMU;, RD, + ADY)
= (ARt g, oy i>ko (4.12b)

Cifh = (1 — RQF; + RAY = (4™ 7079, @)

or

Copq1 = (AWRHg, @Dy i > k. (4.12¢)

However, it is easy to see from (4.2) that Az, Bz, C'21+1, defined by (4. 12), do not satisfy
recursion formula (2.9). Therefore, we have to modify Ay so that they satisfy (2.9). In
fact, (4.124) implies that we can take

Au=(AM0 o™ 1y ikt

where 1; is a constant; in particular, we take n; = —%hz(,'_ko), then we obtain (4.9¢). Finally,

it is easy to verify that due to (4.2) the quantities Ay;, ﬁz,-+1, Czi41, defined by (4.9), satisfy
(2.9). According to (4.8), we complete the proof. [
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For example, for equations (4.4), we obtain from (4.9) that

Ag=40=1 Bi=B =0 € =C =RY (4.13a)

= {1, &) (4.135)
Ay = 1A% 2w, 0Dy — (A%, 00 12 {4.13¢)
By = (A%, 0l i1 (4.13d)
Copr = (A% 7105, 00Dy i1 (4.13¢)

Then, integrals of motion for (4.4) can be found from (4.10). They are

= (¥, &)+ REDQ
Fy = (A2, @77y — (A2, 95 + (0, @ 7Y)?
+ RENAw, @f ) + gaw,, 977
F = (A%29;, 0077) — (A%20,, 050y + (0, oDy (a4, oY)
k=2
— (A%, 0N + Y (AR, @) — (AT, 9
i=2
X (A2, ©f7) — (ATH2 0, )

+ QA% &) + RED(AZu, o)

k—2
+ Y (AT, oIy ARy, o) k> 3. (4.14)

i=]

By using the method proposed in [21,22], we now show how the Lax representation
for (4.2) can be deduced from formula (2.5). We find from (4.9)

[==) ==]
"' —21— = -1 —Zf
z2ku E :st-c.]Z n-1 _ § :<A21 o1 v, (pg J)Z 21425

f=ky '
N 21+]
-n
“ZZ IR V1¢y;
=0 j=1 z
N =D
iz ey
=AM f”%; (4.15a)
=l T
o " N ;ZWZ_;‘P(“])
2" Gz ¥ =Z——Z:;— (4.15b)
i=ky j=1 J
e 1 SZ0ue )~ ey )
zzkn Z Anz 2 =§Z I T2 4 (4.15¢)
i=ko+] =1 A 41

Let us define

My, =T = (T} + No= Vi — A+ No (4.16)
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where Vi, is given by (2.13), and

- 1 3P BT — Wy, ) 2 YT
No = LAY LY i J& LY ) 4174
° zzZ—z?( zi2¥ 657 126" — w05 ") @170
0 0 :
A= (0 (W, (Dg_”)) . (4.17h)

Since [* satisfies {2.5), ]l?!ko also satisfies (2.5)
(EMy)U — Uy, = 0.

The above formula is valid owing to (4.2). Conversely, it gives the Lax representation for
{4.2).

Proposition 4. By substituting expression Mkn for 72", the stationary zero-curvature
equation (2.5) reduces to the Lax representation for (4.2):

(EM)U — Uy, =0 (4.18)
with the linear problem equations given by
EYy =Uw,¥ Mgy =uy. 4.19)

Proof. 1t follows from (2.14), by taking m = kp, that

_ . 0 {1- RQ)Gkﬂ
(EVi)U — UV, = (-(1 — RO)F, 0 ) (4.20a)
One finds
B 0 (¥, oy
—EAT+VA= (—Rw‘”, @) —1u, @)+ Lo, @5‘”)) (4200

It is easy to calculate the matrix elémeats of ((ENp)U — UNy) = K = (K;;). For example,
we get

N
=Y FUS Wb — v + o) — el

f=1

+ 30200850 — vn05 ]

— {8, ¥77) +Z oy CLACLVERHEN

J—I 7
¥l by — 285, + 305 W8l — vaiel L.
Then it is easy t0 see that the coefficients at 1/(z2 — z}) in (4.18), which are just given by

that in X, are satisfied by (4.2a) and (4.25) and the remaining ferms in K together with
(4.20a) and (4.20b) give rise to (4.2¢). This completes the proof. O
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For example, the Lax representation for equations (4.4) is given by (4.18) with
i o (38 T, ) zQ
' ZRED =12 —(w, 0{) )

The AL hierarchy with sources is defined similarly as for the continuous systems [1,2]
as follows

EY = A + QU EWs = RU,) 4 AT sy {4d.21a)
ECY®; = AD; + RD, EV®; = 0% + A~ Py (4.215)
Q 6 Hy, (("I-'z, Py}
=J— =7 . 4.2
7 (R)r,, w7\, @) @219

As a consequence of proposition 4 (note (4.20) for ky = m), we immediately obtain the
following proposition.

Proposition 5. The AL hierarchy with sources (4.21) admits the following discrete zero-
curvature representation:

U, = (EM)U — UM, (4.22)
with the linear problem equations given by

Ey =U(u, 2)¥ ¥, = My (4.23)
where

My =V + No— A. (4.24)

We can also consider anoter restricted flow of the AL hierarchy defined as

E¥ = AW, + 00, EV, =Ry + A7y, (4.25a)
E(“]}q’] = A®| + Rdy E(_nﬁbg = 0% + A D, 4.256)
s H, §H,

S_,Ojﬂ = (U, B} Mgn = (rq, Da). (4.25¢)

it is a Lagrange system. In what follows, we present similar results for (4.25). As before,
we define

Ay = Ay Boi) = By Carer = Coi i=0... k-1 (4.26a)

Aggy = (Tg, D5 (4.260)
‘ZZE — __%((AZL'[;—EELP], (Pg“l)} _ (A2ku—2i 0, (b(z—-l))) izhky+1 (4.26¢)
By =— (A%~ 209 @Y i (4.264)

Coint = —(A%¥ 710, @Dy g (4.260)
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Then it is easy to verify that, due to (4.25), the quantities 22,-, §2f+;, ég;+1 ’satisfy (2.29)

and, therefore, I" satisfies (2.5). According ta (4.8), we obtain the following integrals of
motion for the Lagrange system (4.25):

B = i AniAns; + i BypCouz  k=0,1,.... @27)
=0 i=0
Let us define
M, =772 =V, + A+ No ' (4.28)
where Vy, is given by (2.31), Ny is given by (4.174) and

1 ((wl, @) ¢ (1, o577 0

A=— _ .
0 ~ (@, O70) 4 (9, BE1Y

7 ) . (4.29)

Then, in a similar way as before, we can show that by substituting expression M & for
z=%T, the stationary zero-curvature equation (2.5) reduces to the Lax representation for
(4.25).

(EM)U — UMy, =0 (4.30)
with the linear problem equations given by

By =Uw2y  Myy = pib. @31)

Also, the following AL hierarchy with sources:

EV = AV + O, E¥n = R¥ + A1y, (4.32a)
ED@| = A®; + R, EXVd, = 00, + A", (4.32h)
Q 8H, (¥, @)
=J—=2 _ 4.32,
(R ) s 7w, @) (432¢)

admits the following discrete zero-curvature representation:
Uy, = (EM)U - UM,, (4.33)
with the linear problem equations given by

E¥V=U@ ¥ ¥, = Mn¥ (4.34)

I

where



Restricted flows of the AL hierarchy 133

Finally, we consider the continuous limit of the following AL hierarchy with sources:

EV, =AY + 0¥y EY; = RY; + A7, (4.35a)
ECD®, = AD; + R, EVG, = Q@ + A~ D, (4.35b)
Q i m—i =] F— - (lIJZ; "Di)
(R),m e {Zg.c =D [( )” g (G )J (M%))}

' (4.35¢)

and the AKNS hierarchy with sources [1,2]

Vie=—Ali+qly  Vn=rti+AY (4.36a)
P = AD =Dy By =—q®i - A, (4.365)
) — ,p] { Smt2 ) _ (s, &;)1)) 236

’"):,., ? G[(bm-e'-Z) ((‘1’1,4’2) (4.36¢)

where
W = (Fit, oo i)' ®; = (i1, ... Pin)’ i=12
A == diag(hs, - .., Ax).
Owing to (3.15) and (3.24), it is easy to find following proposition.
Proposition 6. Under transformation (3.9) with
8 = [(—2)" L mpmt2) 12

the AL hierarchy with sources (4.35) goes to the AKNS hierarchy with sources {4.36) in the
continuous limit.

As a consequence, all restricted flows of AL hierarchy (3.25), which are defined as the
stationary equations of (4.35), go to the restricted flows of AKNS hierarchy (3.2), which
are defined as the stationary equations of (4.36), in the continzous limit. This continuous
limit may be used for deriving numerical schemes for calculation of trajectories of restricted
flows of the AXNS hierarchy.

For example, the restricted flow of AKNS hierarchy for m = 1 reads

By, = —AY) + g0, oy =r¥; + AT, ' 4.37a)
&1y = AP —rd, &y = ~qb - AD, (4.376)
Hrex ~ 2qr%) = (¥, &) ge — 24°r) = (8, $a). 4376

Define

q =4 go=r P 2“%’} "—_“"Ix
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then (4.37) can be written as a Hamiltonian system

i aH, 3!{}1

s 8H - 94, _oE 9
3pi = dg:

Wiy = —— Piy = ——— f -i=1,2 (438
3%, o, Gix i ( )

with

ﬁl = _<-55-‘I’l| (.I‘)l) + (5@21 &)2} + Qqu"Zs él) +QZ{‘I}[, EI‘)Z) - 4P] 22 -+ :];'41243'

It was shown in [1, 2] that the finite-dimensional Hamiltonian system (4.38) is completely
integrable in the Liouville sense.
The restricted flow of AL hierarchy for m =1 is

EY¥, =AY + Q% EW, = R + A7y, {4.39a)
E-V® = AD; + RO, ECVD, = 00 + A" @y (4.395)
RM 4 RED — pREVQ — RRVQ — 2R = (I, &) (4.39¢)
0" 4 0" — 0O"VUR - QO R —20 = (¥, $2). (4.394)

Proposition 6 implies that under transformation (3.9) with g = 24372, restricted flow
(4.39) is the discrete version of restricted flow (4.37).

Acknowledgment

One of us (YBZ) thanks the Swedish Institute for financial support.

References

{1} Ragnisco O and Rauch-Wojciechowski S 1992 Jfnverse Problems 8 245
[2] Zeng Yunbo and Li Yishen The general scheme for higher-order decornpasitions of zere-curvature equations
assaciated with &/ (2) Preprint
[3]1 Ragnisco O (992 Phys. Letr. 167A 165
[4] Ragnisco O and Rauch-Wojciechowski S Integrable maps for the Garnier and the Neumann system Preprint
[5] Zeng Yunbo, Rauch-Wojciechowski S and Li Yishen Factorization of flows of the Toda hierarchy and new
integrable symplectic maps Preprint
[6] Zeng Yunbo and Rauch-Wojciechowski § Continuous iimit for the Kac—Van Moer-beke hierarchy and for
their restricted Hows Preprint
[7] Herbst B M and Ablowitz M I 1993 Comput. Phys. 105 122
{8] Yoshida H 1993 Celest. Mech. Dynam. Astron. 56 27
[9] Rauch-Wajciechowski S 1992 Phys. Letz. 1704, 91
[160] Zeng Yunbo 1991 Phys. Lett. 160A. 541
[11] Rauch-Wojciechowski S, Jiang Zhnhan and Bullough R K 1986 Phys. Le#t. 217A 399
[12} Watson K M, West B J and Cohen B I 1978 /. Fluid Mech. 77 185
(131 Meiss I D 1979 Phys. Rev. A 19 1780
[14] Moser J and Veselov A P 199] Commun. Math. Phys. 139 217
{151 Ablowitz M J and Ladik J 1975 J. Marh. Phys. 16 598; 1976 17 1011
[16] Tu Guizhang 1990 J. Phys. A: Math. Gen. 23 3903
{171 QGerdjikav V S, Ivanov M I and Kulish P P 1984 7. Marh. Phys. 2525
[18! Schilling R J 1985 J. Math. Phys. 30 1487
[19] Ablowitz M J, Kaup D J, Newell A C and Segur H 1974 Swd. Appl. Marh. 53 249
[20] Bruschi M, Ragnisco O, Santini P M and To Guizhang 1991 Physica 49D 273
[21] Antonowicz M and Rauch-Wojciechowski S 1993 Inverse Problems 9 201
[22] Zeng Yunbo and Li Yishen 1993 [ Phys. A: Math. Gen. 26 L273



