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Abstract. It is studied here how the Ablowia-Ladik (AL) hierarchy and their restricted flows 
are related to the AKNS hierarchy and to their restricted flows in the continuous limit. It is shown 
that restricted Rows of the AL hierarchy yield dismte maps approximating restricted Rows of 
the AKNS hierarchy. Integrals of motion and Lax representation for restricted flows of the AL 
hierarchy as well as a discrete z e m - c w "  representation far the AL hierarchy with sources 
are given. 

1. Introduction 

In this paper we consider restricted flows of the Ablowitz-Ladik (a) hierarchy in order to 
construct discrete maps approximating restricted Rows of the AKNS hierarchy [1,2] which 
are known to possess the form of multiwave interaction equations. 

This work is a part of a programme aimed towards systematic construction of integrable 
maps approximating integrable Hamiltonian systems constructed as restricted Rows of 
soliton hierarchy [3-6]. These maps give rise to discrete algorithms for the numerical 
calculation of trajectories 171. Such algorithms are known [7,8] to be considerably better 
than the standard discretizations (e.g. a multistep method) or even symplectic discretizations. 

By restricted Rows of a soliton hierarchy we means sets of ordinary differential equations 
(ODE) invariant with respect to the action of all flows of this hierarchy which are constructed 
in the following way: they consist of a fixed number of copies of the spectral problem and 
of a restriction for a (higher) Row of the hierarchy in terms of square eigenfunctions. 
It has been shown [1,2,9,10] that, in many instances, these equations have the form of 
Newton equations or of a dynamical system and, therefore, can model physically interesting 
processes. Restricted flows of the AKNS hierarchy [I, 21 are physically interesting equations 
because they acquire the form of multiwave interaction systems [ 111 which model the growth 
of a low-frequency internal ocean wave by interaction with a spectrum of higher frequency 
waves [I21 and have also been used as a model for plasma turbulence [13]. 

The approach for constructing restricted flows of soliton hierarchy can also be applied 
to obtain restricted Rows (discrete maps) of a hierarchy of integrable discrete systems 
(nonlinear differential difference equations). We suppose that the hierarchy of integrable 
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discrete systems is associated with a discrete isospectral problem and possesses Hamiltonian 
structure. Then we consider a system consisting of N copies of the spectral problem and of 
constraint relating the variational derivatives of Hamiltonian functions and eigenvalues. This 
system is also invariant under all flows in the hierarchy and naturally gives rise to a discrete 
Euler-Lagrange equations. Integrals of motion and Lax representation for these Lagrange 
systems can be deduced directly from the stationary discrete zero-curvature equation for 
the hierarchy. In many cases, these discrete maps are discrete versions of restricted flows 
of some soliton hierarchy. As we shall show, the restricted flows of the AL hierarchy are 
discrete versions of restricted flows of the AKNS hierarchy. 

We note that discrete versions of several classical integrable systems are investigated in 
[ 141. To describe such a discrete system, a variational principle is taken as a starting point, 
and the Lax representation for the discrete integrable system is found via a factorization of 
certain matrix polynomials in [14]. It is easy to find that this approach and the approach 
mentioned above are quite different and are used to treat different systems. We would like 
to emphasize that the starting point for reducing discrete maps in our approach is a hierarchy 
of integrable discrete systems with Lax representation and Hamiltonian structure, and the 
properly of these maps, such as the Lax representation, is directly deduced from one of the 
hierarchies. 

This paper is organised as follows. In the next section, we describe the zero-curvature 
representation for the AL hierarchy 1151, by using the method of [16], and present recursion 
formulae and the Hamiltonian structure for the AL hierarchy in a somewhat different way 
than in [15,17,18]. Then, in section 3, we show, by using the method in [6], how the 
Hamiltonian structure, the recursion relation and the square eigenfunction relation for the AL 
hierarchy converge to those for the AKNS hierarchy. In particular, we construct a sequence of 
equations in the AL hierarchy which has the AKNS hierarchy as a continuous limit. Finally, 
in section 4, we study restricted flows of the AL hierarchy and find integrals of motion 
and Lax representations for these Lagrange systems as well as the discrete zero-curvature 
representation for the AL hierarchy with sources. We also prove that restricted flows of the 
AL hierarchy go to restricted flows of the AKNS hierarchy. 
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2. The Hamiltonian structure of the AL hierarchy 

Consider the following Ablowifi-Ladik discrete isospectral problem [15]: 

where U = (U,. UZ)' = ( Q ,  R)', Q = Q(n, t )  and R = R(n, f) depend on integers n E Z 
and t E I[$, z is the spectral parameter and the shift operator E and difference operator D 
are defined as 

(Ef)(n) = f ( n  + 1) (Df)(n) = (E - l)f(n) n E Z. (2.2) 

Throughout this paper, we write f"' = @)f. Some recursion formulae for a hierarchy of 
discrete integrable systems associated with (2.1) (referred to as an AL hierarchy) were given 
in [15,17,18]. To find the continuous limit and restricted flows of the AL hierarchy, we 
need their Hamiltonian structure and zero-curvatore representation. So, first we present the 
discrete zero-curvature and Hamiltonian structures as well as the corresponding recursion 
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formulae for the AL hierarchy. These formulae are somewhat different from those in 
[15,17, IS]. 

We combine (2.1) with its t-evolution part 

$rtm = Vm@ m = 1,2, . . . (2.3) 

The compatibility condition of (2.1) and (2.3) gives rise to a discrete zero-curvature equation 
(assuming zt, = 0) 

Ucn, = (EVm)U - U V ,  m = 1,2, ... . (2.4) 

To derive the hierarchy of evolution equations associated with (2.1), we first solve the 
stationary discrete zero-curvature equation [I61 

( E r p  - ur  = 0. (2.5) 

The substitution of 

r = ( "  C -A B )  

into (2.5) gives 

A("Z + B ( ] ) R  - AZ - C Q  = o (2 .7~)  

(2.7b) 
1 

A ( ] ) Q  + B(')-  - BZ + A Q  = o 
Z 

( 2 . 7 ~ )  
1 cWz - A ( U R  - A R  - c- = 0 
Z 

1 1 
2 2 

C(')Q - A ( ' ) -  - B R  + A -  = 0. (2.74 

We shall find two power-series solutions to (2.7) in powers of z and $, respectively 

2.1. The AL hierarchy corresponding to r expanded in power series of I / z  

Let us assume 

Then, (2.7) leads to the following recursion relations: 

A S )  - A ~  = o B' = Q(AS) + A ~ )  cyl) = R ( A ~ )  + A;) (z.ga) 

= + Au) + BiiIl (2.9c) 

A;) = eczi-' - R B ; ; ~ ,  = Q C ~ ~ + ~  ('1 - RB~;+' (2.9b) 

c& = R(A;) + + cZi-, i = ~ 2 , .  . . . (2.94 
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As the initial value for this recursion, we lake 
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A. = i 
2 ’  (2.lOa) 

It is easy to verify that 

(2.12) 0 

which is not compatible with U,, . Therefore, we set 

v ,  = (rz2”)+ + A~ (2.13) 

and try to find A, such that (EV, )U - UV, is of the following form compatible with U,: 

(EVm)U - uv, = (2.14) 

It is easy to find that 

(2.15) 0 0  
.-=(O A?,)  

and 

(2.16) ‘1) gm = B ~ + I  - A2mQ fm = + A Z R .  

Then, (2.4) gives rise to the following hierarchy of equations: 

= Bzm+l - Az, Q (2.17) 

In order to write hierarchy (2.17) in Hamiltonian form, we apply the following trace 

R, = -CE+l + Ag R m = 1,2. . . . , 

identity given in [16]: 

(2.18) 
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where Tr means trace of a matrix, y is a constant to be fixed and V is given by 

A f - B R  - A Q f B z  v =ru-l= - 
C + + A R  - C Q - A z  

and S/Sui stands for the discrete variational derivative defined in the usual way as 

By using (2.7), it is found that 

(2.19) 

(2.20) 

T r ( V g )  1 (2.210) 

1 
T r ( V 5 )  =~&(C:+AR) 

1 

(C(’)z - A‘”R) (2.21b) 

Tr V-  =- (Bz  - AQ).  (2.21c) ( ::) I - R Q  

Then, (2.18) gives 

(2.22a) 
2 SA 
2: S Q  

1 
(2.226) -_ 2 S A  - - ( 2-Y ( - :z) z y )  -(Bz - AQ) .  

z 6R 1 - R Q  

By expanding in powers of z, we obtain 

SA2 y - 2 i  
SQ 1 - R Q  

2- = - (c& - A ~ : ) R ) .  

To fix the constant y ,  we simply set i = 1 and find that y = 0. Thus, we have 

I ( I ) ~  (1) 6H. 
1 - R Q  S Q  

1 6Hi 
(&+I - AziQ) = - 1 - R Q  SR 

F- - - (ezi+] - A,i R )  = 2 I -  

G. - - L -  

where 

Azi Hi=-T i = l , 2 ,  . . . .  

For i = 0, we define 

8 Ho R F o = - - -  - HO = -In(l - RQ). (2.234 Q SHo G o = - = -  
I - R Q  SQ I - R Q  SR 

- 

(2.22c) 

(2.23a) 

(2.23b) 

(2 .23~)  
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The recursion formula for Fi and Gi can be found in the following way. From (2.9) 
we have that 

1 
1 - R Q  

Q F ~ - R G ,  = --(Qc& - A : ~ . ) R Q - R B ~ ~ + , + A ~ R Q )  = A ~ ) - A ~ ~  

and, therefore, 

Azj = D-'(QFj - RGi)  (2.24) 
where D-' is the inverse of the difference operator D.  By using (2.9b), ( 2 . 9 ~ )  and (2.24), 
it is found that 

1 
1 - R Q  F, - ( A z R  + G - 1 )  

1 (1) - - ~- IRD-'(Qczi-i - RBz,-I)  + Czi-11 1 - R Q  
1 

I - R Q  
{ R D - ' [ Q ( C ~ ~ _ I  - R(-')Az-z) - R(Bi!L, - Q(l)AgL2)] =- 

- RQRc-''A2i-2 + Czj-l] 

1 -- - {RD-'[QE'-"(l  - RQ)Fj-i - R E ( 1  - RQ)Gi-i] 
1 - R Q  

+ ( 1  - R Q ) R ( - ' ) D - ~ ( Q F  - RGi-I) + E(-')(l  - RQ)Fi_l).  
We can also find a similar formula for Gi. We, therefore, have 

where 

(2.25b) 

D- 'QE( - ' ) (~  - RQ)+R(-')D-'Q E ( - I ) ( I  - R Q )  + - III = - R 1 
I - R Q  1 - R Q  

1'2 = -~ D - ~ R E ( I  - R Q )  - R(- ' )D-IR 
1 - R Q  

Q 
I21 = -D-] Q'"(1 - R Q )  + Q")D-'EQ 

1 - R Q  

~ ( 1 -  RQ)  - - D - ~ R ( ~ ) E ( ~ ) ( I  - R Q )  - Q(')D- 'ER.  
1 

122 = - 
1 - R Q  1 - R Q  

Q 

Therefore, we can write the hierarchy (2.17) in the following Hamiltonian form 

( f )  = j ('m) G m  = jLm( Go '0) = .rLm( Q / U  R / ( ' - R Q ) )  - R Q )  
I", 

m = 1 , 2 .  ... (2.26) 8 Hm = J -  
6U 

where the Hamiltonian operator J is given by 

J = (  - 1 + R Q  0 m = 1.2, . . . . (2.27) A2m H, = -y 
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2.2. The A L  hierarchy corresponding to r expanded in power series of z 
Similarly, if we take r in (2.6) as follows 

(2.28) 

Now we substitute V, in (2.3) with c,, then (2.4), with V, = cm, gives rise to the following 
hierarchy of equations: 

etn, = -Bz,,+I - ( I1  - Az,Q 7 1 )  R ,  = &I+I + AzmR. (2.32) 

Then, we find that 

- - 
(2.33a) 

1 -  S H i  
(Czi+~ + AziR) = - f? - -- 

1 - R Q  S Q  

8 Hi 

1 -  

- 
(2336) + Ag’Q) = i = 1,2, .. ., 1 G. - -__ 

I - R Q  1 -  

where 

i 2 i  (2.33~) - H. - -- i = 1,2, . . . . 1 -  
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For i = 0, we define 
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We also have 

where 

(2.34b) 

Therefore, we can write hierarchy (232) in the following Hamiltonian form: 

(2.35a) 

where the Hamiltonian operator J is given by (2.27) and 
- 

m=1.2 ,  .... (2.356) H, = -m A2m 

Finally, by combining (2.26) and (2.35), we obtain the following proposition. 

Proposition I .  If we take 

etn, (a1 Vm + a z v m M  (2.36) 

where a1 and 012 are arbitrary constank, V, and v, are given by (2.13) and (2.31), 
respectively, and the discrete hierarchy of zero-curvature equations (2.4) then gives rise 
to the following AL hierarchy: 

(2.37) 
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where the Hamiltonian operator J is given by (2.27), recursion operator L and L by (2.25b) 
and (2.34b), (Fo, Go)' and (PO, GO)' by (2.23d) and (2.334 and Hm and by (2.27) and 
(2.35b). 

The adjoint equation for (2.1) reads: 

E(- ' )@ =@U ,$ = (4% I +z) (2.38) 

and it can be found by a direct calculation that the square eigenfunctions 

satisfy 

(2.39) 

(2.40a) 

(2.40b) 

3. The continuous limit of the AL hierarchy 

It is known that some nonlinear differential-difference equations in the AL hierarchy are 
discrete versions of some soliton equations, such as discrete mKdV [ 151. We shall show here 
that the Hamiltonian structure, the recursion relation and the square eigenfunction relation 
for the AL hierarchy converge to those for the AKNS hierarchy, and the continuous limit of 
a sequence of equations in the AL hierarchy (2.37) yields the AKNS hierarchy. 

The AKNS spectral problem is [I91 

$ x = M $  ' M = M ( i , h ) =  (-," :) 6 =($E, $22)' (3.1) 

where P = (4, r ) t  and h is the spectral parameter. The AKNS hierarchy associated with (3.1) 
reads: 

where p is a constant and 

(3.34 
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Here, a = afax and aa-' = a-la = 1.  In particular, we have 
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a0 = -1 b o = c o = a , = O  c ~ = r  

61  = q  a2 = 2qr (3.4) 
1 cz = zrx 

c3 = ;i(rxx - 2qr2) 

I 

b2 = -1 I 2 
2qx b3 = &xx - 2q r ) ,  . . . 

If we take r = Tq" and p = Zi, then (3.2), for m = 1, gives the nonlinear Schrodinger 
(NLS) equation 

iq, = qxx i 2q2q". (3.5) 

The adjoint equation for (3.1) reads: 

& = -4M 4 = (&,h,. (3.6) 

It is known that the variational derivatives of eigenvalues have the following expression in 
terms of eigenfunctions: 

and that 

(3.7) 

Let us consider the AL hierarchy on a lattice with a small step h. It is known [ E ]  that 
if we take 

E'k'Q(n. t )  = hq(x  + kh,  f) E(')R(n,t)  = h r ( x + k h , t )  (3.9a) 

E'k'$i;.(n, t )  = B$i(x + kh,  0 E"'@i(n, t )  = p&(x +kh,  f) i = 1.2 (3.9b) 

(3.9c) z = e  

where B is a constant, then we have 

-hi  

E h  - Z$I - Q@z = B h ( h  +@I - q$2) + O(hz)  

W 2  - R$I - -!h = B h ( h  - A$2 - r$i) + O(h2) 

E'-l'91 - z91 - R@z.=~-ph(& - A& + r&) + O(h2) 

(3 .10~)  

(3.10b) 

(3 .10~)  

1 
z 

(3.104 
1 
Z 

E(-')@2 - Q@i - -h = -Bh(&x + 1& + 441) + O(h2) 

which implies that (2.1) and (2.38) go to (3.1) and (3.6), respectively, in the continuous 
limit. 
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Notice that 

E") = ekJ"' = 1 + kha + O(h2) 

D = ha + ih2a2 + 0 ( h 3 )  

(3.11~) 

(3.11b) 

Owing to (3.91, it is found that the Hamiltonian operator J given by (2.27) has the following 
expansion: 

D-' = h-'a-' - 1 + O(h).  

J =-;.Io - iqrJohZ+O(h3).  (3.12) 

Similarly, for the recursion operator (2.25b) and (2.34b), we find, from (3.9) and (3.11), 
that 

L = I - 2hLo + hZL1 + O(h3) 

i = I + 2hLo + h2L1 + O(h3) 

(3.13~) 

(3.13b) 

where 

= Lo(2Lo - I,) + @o - I0)Zo 

= 2L:, - ;I: (3.14~) 

(3.14b) 

It is easy to see that, owing to (3.9), 

(3.15) 2 "  - 2 -  - 
*2$1 = B *2$1 *I42 = B *I& 

and 

L - z21 = I - 2hLo - (1 - 2hh)I + O(hz) 

= -2h(Lo - A I )  + O(hz) 

and, therefore, we obtain 

(3.16) 

(3.17) 

which implies that (2.40~) goes to (3.8) in the continuous limit. It is known 115,191 that 
for the properly defined square eigenfnnctions 

(3.18~) 

(3.186) 
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and, owing to (3.17), recursion relation ( 2 2 5 ~ )  corresponds to recursion relation (3.3). 
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From (3.13u), we obtain 

( ~ 0 )  = - 1 (") = h (;) +O(P) 
Go I - R Q  Q 

and in general 

for any f and g, and, therefore, 

and by using (3.14), we obtain 

(3.21) 
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which means that (2.40b) goes to (3.8) in the continuous limit. Also, (3.21) and (3.18) 
imply that recursion formula (2.34~) corresponds to recursion formula (3.3). In the same 
way, we get, from (3.13b). that 

By combining (3.20) and (3.22), we obtain 

m 

J c C A ( - l ) m - i [  (2.) + (-l)m-l (,$)I = (-2)"mhm'ZJoL;+1 (i) +O(hm+3) 
i=O 

(3.23) 

and we can, therefore, formulate the following proposition. 

Proposi?ion 2. A sequence of equations in the AL hierarchy (2.37) relates to the AKNS 
hierarchy in the continuous limit in the following way: 

(3.24) 

Equation (3.24) implies that the following sequence of equations in the AL hierarchy: 

m 

P J CA (- 1 y - i  [ (2;) + (-Um-I (,$)I (3.25) (Re) I, = (-2)"hm+' i=o 

(3.26) 

If we take R = TQ* and p = 2i, the left-hand side of (3.26) gives 

which is the so-called differential-difference NSE. Equation (3.26) implies that (3.27) goes 
to the NSE (3.5) in the continuous limit. 
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4. Restricted flows of the AL hierarchy 

We consider for N distinct z j ,  j = 1, . . . , N ,  the following system of equations consisting 
of replicas of (2.1) and (2.38), as well as of the restriction of variational derivatives for 
conserved quantities Hko and z j :  

E@lj = z j @ ~ j  + Q@zj  

E(-')@, I . - - z .  Idij + R42j 

Yunbo Zeng and S Rauch-Wojciechowski 

(4.1~) 
1 

zj 
E@zj =R@lj  +-@zj  j = 1, ..., N 

(4.lb) 
1 

zj 
E'"'4z. , - - Q41j + -42j  j = 1, ... , N 

(4.1~) 

As argued in [9,10,1-51, this system is invariant with respect to the action of all flows of 
the AL hierarchy and admits a natural Lagrangian formulation. We call (4.1) the restricted 
flows of the AL hierarchy. We shall show that integrals of motion and Lax representation 
for (4.1) can be directly derived from the stationary discrete zero-curvature equation (2.5). 
One of the main reasons for studying (4.1) is that they provide discrete versions of the 
restricted flows of the AKNS hierarchy which are finite-dimensional completely-integrable 
Hamiltonian systems. 

We shall denote the inner product in RN by (., .) and use the following notation: 

* i  = (@iI ,  . . ., !hN)' 
By substituting (2.39) into (4.1), we obtain 

@ j  = (&I.. . . , 4 j ~ ) '  i = 1,2 A = diag(z1,. . . , Z N ) .  

EWi  = 12'4'1 + Q4'z EW2 = RWi +A-]'& (4 .2~)  

E'-')Q] = A @ l +  ROz E'-')@z = Q@l +A-'@ 2 (4.2b) 

which are discrete Euler-Lagrange equations 1201 

(4.2~) 

(4.34 

(4.3b) 
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It is easy to see from ( 4 . 2 ~ )  and (4.2b) that 

(A'Y;') ,@l) + (A'Y;'), $2) = (Ai%,  @!-I)) + (A"&, *;-I)) 

= (Ai"Y], @ I )  + Q(A'Y2, (PI) + R(AiYi, @d + (Ai-'%. @z) 

which means that the following hi are integrals of motion for the Lagrangian system (4.2): 

hi = ( A i q l ,  Ol-]') + {AiY2, 0 L - I ) )  i = 0, 1, .. . . (4.5) 

However, there are only N independent integrals of motion among hi. In order to find 
more independent integrals of motion for (4.2), we need the following formula obtained 
from (2.5) and r = VU: 

m = [U,  VI ( 4 . 6 ~ )  

or 

r(') = uv. (4.6b) 

Thus, 

D(Trrz) = Trr(')' -Tr? = Tr(UV)' -Tr(VU)'= 0 

which leads to 

D(Trrz) = 2D(A2 + BC) = 0, 

or 

Tr rz = 2(A2 + BC) = const. (4.7) 

This implies that if r satisfies (2.5), then 

k = 0, 1, .. 

are integrals of motion for the Lagrangian system (4.2). To find Fk with the simplest 
expression in terms of coordinates (91, Y2, Q, 01, Q2, R), we have to construct f from 
(4.2) so that satisfies (2.5) and A, B ,  C have the simplest expressions in terms of 
(*I, W,, Q, @ I ,  @z, W. 
Proposition 3. Let us define 

- - -  

&i = Agi &+I = Bz+j &+I = C~i+l i = 0, . . . , ko - 1 (4.9u) 

&i = I(( I * Z ( i - k d q , , ,  @!-I)) - (A2(i-b)qr2, @:-I))) 

ti*, = (Yl, @;-I)) (4.9b) 

(4.9c) 

(4 .94 

E2i+l = (Az(i-kd+' Qz , @(-I)  I ) i > k o  (4.9e) 

i > k o + l  

= (Az('-kO)o'+'Q, I 2  O(-') 1 i2 .b  
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then Azi, Bzi+i, &+I,  under (4.2), satisfy (2.9), namely, 

Yunbo Zeng and S Rauch- Wojciechowski 
- -  

under (4.2)- satisfies (2.51, so we have the following integrals of motion for the Lagrangian 
system (4.2): 

Proof. From (4.2c), we obtain 

(4.11a) 

According to (2.25) and (2.40a). let us define 

(4.1 16) 

By using (2.23), (2.24) and (4.2). we find that 

= (1 - RQ)Fj +RA$) = (A2('-b)+'Y(1) 2 1 @ 1 )  

or 

eu+l = (A2(i-b)+ltJrz, @!-I) ) i > ko. (4.12~) 

However, it is easy to see from (4.2) that dzi, &.i+l. &+I, defined by (4.12), do not satisfy 
recursion formula (2.9). Therefore, we have to modify so that they'satisfy (2.9). In 
fact, (4.12a) implies that we can take 

xu = (Az(i-b)ql , @(-I) ] )+ai i>kO+l  

where ai is a constant; in particular, we take = -$hz(i-b), then we obtain (4.9~). Finally, 
it is easy to verify that due to (4.2) the quantities &, &+I, &+I,  defined by (4.9). satisfy 
(2.9). According to (4.8), we complete the proof. 0 



( ( ~ \ “ - 2 i - 2 ~ ~ ,  @!-I)) - (AZ-2i-2 Q2, a;-’’)) 
+ Q(LI*-~Y~,  @!-I)) + R(-1)(A2k-3Yl, @:-’)) 

+ ~ ( A ” - l Y z ,  @1-’))(A*-’-3Y1, @$-I)) k > 3. (4.14) 

By using the method proposed in [21,22], we now show how the Lax representation 

k-2 

i d  

for (4.2) can be deduced from formula (2.5). We find from (4.9) 

( 4 . 1 5 ~ )  

(4.15b) 

(4.15~) 

(4.16) 
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where Vk, is given by (2.13), and 
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Since ? satisfies (2.5), hik, also satisfies (2.5) 

(Ekk , , )U  - U&, = 0. 

The above formula is valid owing to (4.2). Conversely, it gives the Lax representation for 
(4.2). 

Proposition 4.  
equation (2.5) reduces to the Lax representation for (4.2): 

By substituting expression M k o  for zwo?, the stationary zero-curvature 

(Ehik,)U - UA?k0 = 0 (4.18) 

with the linear problem equations given by 

E+ = U ( U ,  z)@ I!&* = p$. 

Proof. It follows from (2.14), by taking n = ko. that 

(4.19) 

(4.20~) 

One finds 

It is easy to calculate the matrix elements of ((EN0)U - UN,) 
we get 

K = (Ki j ) .  For example, 

Then it is easy to see that the coefficients at 1/(z2 - z;) in (4.18), which are just given by 
that in K, are satisfied by (4.22) and (4.2b) and the remaining terms in K together with 
(4 .20~)  and (4.20b) give rise to ( 4 . 2 ~ ) .  This completes the proof. 0 
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For example, the Lax representation for equations (4.4) is given by (4.18) with 

The AL hierarchy with sources is defined similarly as for the continuous systems [1,2] 
as follows 

EYI = AY1 + QYz E'42 = RYl +A-'Yz (4.21a) 

E(-"@l = A@] + R@2 (4.21b) E(-llOz = Q0, + A - ' 0 2  

(4.21~) 

As a consequence of proposition 4 (note (4.20) for ko = m), we immediately obtain the 
following proposition. 

Proposition 5. 
curvature representation: 

The AL hierarchy with sources (4.21) admits the following discrete zero- 

U, = (EM,,,)U - U$?, (4.22) 

with the linear problem equations given by 

E$ = u(u, zM $rm = km$ (4.23) 

where 

Mm = V, + N~ - A .  (4.24) 

We can also consider another restricted flow of the AL hierarchy defined as 

EVI A'€', + QYz EW,= RYI + A-'Yl (4.25a) 

E(-')Qi = A@] + R@2 E(-')@z = QQI +A-'@ (4.25b) 

(4.25) 

It is a Lagrange system. In what follows, we present similar results for (4.25). As before, 
we define 

(4.26~) x?i = 22;  &+] = E,+] C2i+1 =CZ~+I  i=O,  ...,k,- 1 

x, = (% @;-I)) (4.26b) 

iu = -.i((A2k~I-2i@l, @!-I)) - ( ~ 2 k r 2 i q  2, Q:-% (4.26~) 

- - - 

- 
i > ko + 1 

(4.268 

(4.26e) 
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Then it is easy to - verify that, due to (4.25), the quantities &;, B z ~ + I ,  &+I satisfy (2.29) 
and, therefore, i= satisfies ( 2 5 ) .  According to (4.8), we obtain the following integrals of 
motion for the L a p n g e  system (4.25): 
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- -  - 

Let us define 

M k o  E Z-".F = vko + h + N o  

where vk is given by (2.31). No is given by (4.17~) and 

(4.28) 

- 
Then, in a similar way as before, we can show that by substituting expression M,, for 
Z - ~ ~ F ,  the stationary zero-curvature equation (2.5) reduces to the Lax representation for 
(4.25): 

- 

- - 
(EMh)U - UM, = 0 

with the linear problem equations given by 

(4.30) 

Also, the following AL hierarchy with sources: 

admits the following discrete zero-curvature representation: 

U,. = (EGii,)U - U$, 

with the linear problem equations given by 

- 
E @  = U ( U , Z ) @  @tm = km@ 

where 
- 
M, = v, + NO + li 

(4.32~) 

(4.33) 

(4.34) 
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Finally, we consider the continuous limit of the following AL hierarchy with sources: 

(4.35~) 

(4,356) 

(4.35c) 

and the AKNS hierarchy with sources [1,2] 

(4.36~) 

where 

Gi = (&,,,. . . , qiNy 
A = diag(ht,. . . ,AN). 

6i = (&, . . . , JiN)t i = 1,2 
- 

Owing to (3.15) and (3.24), it is easy to find following proposition. 

Proposition 6. Under transformation (3.9) with 

p [(-Z)m+"hm+z I 112 

the AL hierarchy with sources (4.35) goes to the AKNS hierarchy with sources (4.36) in the 
continuous limit. 

As a consequence, all restricted flows of AL hierarchy (3.29, which are defined as the 
stationary equations of (4.351, go to the restricted flows of AKNS hierarchy (3.2), which 
are defined as the stationary equations of (4.36), in the continuous limit. This continuous 
limit may be used for deriving numerical schemes for calculation of trajectories of restricted 
flows of the AKNS hierarchy. 

For example, the restricted flow of AKNS hierarchy for m = 1 reads 

GIz = -A$] +qGz $2 =rGl +A52 (4.37~) 

5qX = A O ~  - r6z 6% = -q6, - (4.376) 
- -  

;i(rxx I - 2qr2) = (Gz, 61) a(qxz 1 - 2q2r) = ($1, $ 2 ) .  (4.37c) 

Define 
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then (4.37) can be written as a Hamiltonian system 
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- a 8, a S1 a G1 
a oi a Yi  api aqi 

pix -- ~ i = 1,2 (4.38) 4ir = - Q. --- - a@, 
Yix = T 1x - 

with 

&I = - ( ~ ~ ~ , ~ i ) + ( ~ ~ z , ~ z ) + q ~ ( ~ z ,  ~ 1 ) + q z ~ ~ i , ~ z ) - 4 p i p z + $ q ~ ~ ~ .  

It was shown in [1,2] that the finite-dimensional Hamiltonian system (4.38) is completely 
integrable in the Liouville sense. 

The restricted flow of AL hierarchy for m = I is 

EYI = AT,  + QYz E'& = RYl +A-"& (4.394 

R") + R(-') - RR'-')Q - RR'"Q - 2R = (Yz, @I) 

Q'" + Q'-" - QQ'-"R - QQ'I'R -2Q = ("1, %). 

E'"'Q1 = AQ~I  + RQz E'-')4z = QOi + A-IQz (4.39b) 

(4.394 

(4.39d) 

Proposition 6 implies that under transformation (3.9) with p' = U3/2, restricted flow 
(4.39) is the discrete version of restricted flow (4.37). 
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